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Branching Brownian motion (BBM)

Definition

• A particle performs standard Brownian motion started at a point x ∈ R.
• With rate 1/2, it branches into 2 offspring (can be generalized)

• Each offspring repeats this process independently of the others.

R(t) = maximum at time t.

Asymptotic speed (Biggins 1977)

Almost surely,

R(t)/t → 1, as t → ∞.
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Relations with other models

• branching Markov processes

• log-correlated Gaussian fields (e.g., 2D

Gaussian Free Field)

• front propagation (duality BBM↔ FKPP)

• mean field spin glasses and optimization of

random, non-convex functions (through the

continuous random energy model)

• population models (e.g. position = fitness)

• discrete counterpart branching random walk:

generalizes general branching processes and

(linear) Hawkes processes

Champ libre gaussien 2D, réalisé par Chenlin Gu
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A travelling wave of the FKPP equation

∂tu = ∂2x u+ u(1− u)
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Branching Brownian motion with absorption

Definition

• Start with one particle at x ≥ 0.

• Add critical drift−1, to motion of particles.

• Kill particles upon hitting the origin.

Process dies out almost surely Kesten 1978.

Questions

What is the probability of survival until a large time t?

What does the BBM with absorption and critical drift “look like” when conditioned to

survive until a large time t?
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Context: Critical branching Markov processes

Critical Bienaymé-Galton-Watson process (Zn)n≥0, offspring distribution of variance

σ2.

• P(survival until generation n) ∼ 2/(σ2n), n → ∞ Kolmogorov 1938

• (Zbsnc/n)s∈[0,1] cond. on Zn > 0 converges in law to a cond. Feller diffusion.

Question

Does this hold for general multi-type branching processes which are in a suitable

sense critical?

Yes for finite number of types. In general (infinite number of types), need a certain

integrability condition. Aïdékon, de Raphélis, Harris, Horton, Kyprianou, Palau, Powell,

Tourniaire, Wang, . . .
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Results
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Survival probability

Lt = ct1/3, c = (3π2/2)1/3, wt(x) = Lt sin(πx/Lt)ex−Lt .

Theorem (M.–Schweinsberg, 2022)

If x = x(t) such that Lt − x → ∞, for some constant α > 0,

Px(survival until time t) ∼ αwt(x).

• Throughout the talk: asymptotics as t → ∞.

• Previous results by Berestycki–Berestycki–Schweinsberg 2012, Kesten 1978,

Derrida–Simon 2007

• t1/3 scaling reminiscent of results about particles in BBM staying always close to

the maximum Faraud–Hu–Shi 2012, Fang–Zeitouni 2012, Roberts 2015.
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Survival probability (contd.)

Lt = ct1/3, c = (3π2/2)1/3, wt(x) = Lt sin(πx/Lt)ex−Lt .

Theorem (MS22)

If x = x(t) such that Lt − x → ∞, for some constant α > 0,

Px(survival until time t) ∼ αwt(x).

ζ = time of extinction.

Corollary (MS22)

Suppose x = x(t) such that Lt − x → ∞. Let V ∼ Exp(1). Then,

ζ − t

t2/3
=⇒ 3

c
V, under Px(· | ζ > t).
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Yaglom limit

Lt = ct1/3, c = (3π2/2)1/3, ζ = time of extinction, R(t) = maxu Xu(t).

Theorem (MS22)

Suppose x = x(t) such that Lt − x → ∞. Let V ∼ Exp(1). Then,

R(t)

t2/9
=⇒ (3c2V)1/3, under Px(· | ζ > t).

Reason: morally, R(t) ≈ Lζ−t if ζ > t (and R(t) = 0 if ζ ≤ t).

Same result holds with Rt replaced by log #Nt.
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New result: All-time maximum

Define

M = max
s≥0

R(s), m = arg max
s≥0

R(s).

Theorem (M.–Schweinsberg, 2023+)

Suppose x = x(t) such that Lt − x � t1/6. Then as t → ∞, conditional on ζ > t we

have the convergence in law(
Lt −M

t1/6
,
m

t5/6

)
⇒
(
c1/2R, 3c−1/2UR

)
, (1)

where R and U are independent random variables, R is Rayleigh distributed with

density 2re−r2 on R+, and U has a uniform distribution on [0, 1].
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Simulations: conditioned on survival

x = 1, conditioned on survival until time t

t = 40

t = 100
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Proofs
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https://afst.centre-mersenne.org/
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Workhorse: the process Zt(s)

• Lt(s) = Lt−s = c(t − s)1/3.

• Zt(s) =
∑

u∈Ns
wt−s(Xu(s)) =

∑
u∈Ns

Lt(s) sin(πXu(s)/Lt(s))eXu(s)−Lt(s).

Theorem (MS22)

Suppose we start with an initial configuration of particles so that Zt(0) → z0 > 0 and
Lt − R(0) → ∞. Then there exists a non-degenerate stochastic process (Ξ(s))s≥0,

such that the following convergence in law holds (w.r.t finite-dimensional

distributions):

(Zt(t(1− e−s)))s≥0 =⇒ (Ξ(s))s≥0.

In fact, (Ξ(s))s≥0 is the continuous-state branching process (CSBP) with branching

mechanism ψ(u) = au+ 2
3u log u, for some a ∈ R, started from z0.
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Theorem (MS22)

Zt(0) → z0 > 0, Lt − R(0) → ∞. Then, (Zt(t(1− e−s)))s≥0 ⇒ (Ξ(s))s≥0.

Theorem (MS22)

Under the same assumptions,

P(ζ > t) → P(Ξ(s) → ∞, as s → ∞ | Ξ(0) = z0) = 1− exp(−αz0).
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• (Ξ(s))s≥0: CSBP with branching mechanism ψ(u) = au+ 2
3u log u, for some a ∈ R.

Theorem (MS22)

Suppose x = x(t) such that Lt − x → ∞. Then there exists a non-degenerate

stochastic process (Φ(s))s≥0, such that the following convergence in law holds

(w.r.t finite-dimensional distributions):

(Zt(t(1− e−s)))s≥0 =⇒ (Φ(s))s≥0, under Px(· | ζ > t).

(Φ(s))s≥0 is the process (Ξ(s))s≥0, started from 0 and conditioned to go to∞,

i.e. the descendance of a “prolific individual” Bertoin–Fontbona–Martínez 2008
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An auxiliary process with spine

Branching Brownian motion with a distinguished particle (the spine):

• Starts at time zero from a single particle, the spine, at a point x ∈ [0, Lt].

• For s ∈ [0, t], define

τ(s) =

∫ s

0

1

Lt(u)2
du.

The spine’s trajectory is equal in law to the process (Lt(s)K(τ(s)))s∈[0,t], where
(K(u))u≥0 is the Brownian taboo process on [0, 1] (next slide) started at x/Lt(0).

• The spine branches at (accelerated) rate 1.

• One of these offspring is chosen randomly to continue as the spine. The others

spawn independent copies of the original process started at their positions.
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Brownian taboo process Knight 1969

“Brownian motion conditioned to stay in the interval [0, 1]”

Doob h-transform of Brownian motion killed when it exists the interval [0, 1] w.r.t. the
−(π2/2)-harmonic function h(x) = sin(πx)

Infinitesimal generator: 1
2∂

2
x + π cot(πx)∂x

Boundary {0, 1} is entrance-not-exit
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Small time: conditioning = spine

Lemma

Suppose x = x(t) such that Lt − x → ∞. Let µs be the law of the original process

conditioned on {ζ > t}, and let νs be the law of the process with spine, both starting

with one particle at x. Then for every ε > 0, there exists δ > 0 such that for

sufficiently large t, we have

dTV(µδt, νδt) ≤ ε,

where dTV is the total variation distance between measures.

Proof uses a measure change w.r.t. Zt(δt). Recall: P(ζ > t | Fδt) ≈ αZt(δt), when
Zt(δt) � 1.
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Proof of theorem

• M = maxs≥0 R(s),m = arg maxs≥0 R(s)

• x = x(t) such that Lt − x � t1/6 � L
1/2
t

• To show:
(
Lt−M

L
1/2
t

, L
1/2
t

m
t

)
⇒ (R, 3UR), conditioned on ζ > t. R Rayleigh, U uniform.

Proof steps

1. Conditioning→ auxiliary process with spine

2. Maximum, argmax≈maximum, argmax of spine

3. Use excursion theory for Brownian taboo process
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Step 3

Recall: spine is Lt(s)(1− K(τ(s))), τ(s) =
∫ s

0
1

Lt(u)2
du

M = maxs≥0 Lt(s)(1− K(τ(s))),m = arg maxs≥0 Lt(s)(1− K(τ(s)))

Linearization(
Lt −M

L
1/2
t

, L
1/2
t

m

t

)
≈
√
π2

2

(
1
√
γ

min
s≥0

{K(s) + γs}, 3√γ argmin
s≥0

{K(s) + γs}

)
, γ =

π2

2Lt

Decompose into excursions below 1/2(
1
√
γ

min
s≥0

{K(s) + γs},√γ argmin
s≥0

{K(s) + γs}

)
≈

(
1
√
γ

min
(s,Hs)∈Π

(Hs + γs),
√
γ argmin

(s,Hs)∈Π

(Hs + γs)

)
,

whereΠ is a Poisson point process on R+ × [0, 1/2] with intensity measure du⊗ ν, with
ν(0, h) = π tan(πh) Lambert 2000.
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A Poisson process calculation

Change variables u =
√
γs, Hu = Hs/

√
γ.(

1
√
γ

min
(s,Hs)∈Π

(Hs + γs),
√
γ argmin

(s,Hs)∈Π
(Hs + γs)

)
=

(
min

(u,Hu)∈Πγ

(Hu + u), argmin
(u,Hu)∈Πγ

(Hu + u)

)

where Πγ is a Poisson point process with intensity measure du/
√
γ ⊗ (1/

√
γ)∗ν.

Πγ
γ→0=⇒ PPP(du⊗ π2dh)

(
min

(u,Hu)∈Π
Hu, argmin

(u,Hu)∈Π
Hu

)
∼
√

2

π2
(R,UR)
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Thank you for your attention!
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