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Branching Brownian motion (BBM)

® A particle performs standard Brownian motion started at a point x € R.

e Withrate 1/2, it branches into 2 offspring (can be generalized)
e Each offspring repeats this process independently of the others.

R(t) = maximum at time t.

|

Asymptotic speed (

Almost surely,

R(t)/t -1, ast— oo.
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Relations with other models

® branching Markov processes

® |og-correlated Gaussian fields (e.g., 2D
Gaussian Free Field)

e front propagation (duality BBM <+ FKPP)

05 — s

e mean field spin glasses and optimization of " T

10 10

random’ non-convex functions (through the Champ libre gaussien 2D, réalisé par Chenlin Gu
continuous random energy model)

® population models (e.g. position = fitness) !

e discrete counterpart branching random walk: —
generalizes general branching processes and )
(linear) Hawkes processes A traveling wave of the FKPP equation

oru = dZu+u(l —u)
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Branching Brownian motion with absorption

Definition

5

e Start with one particle at x > 0. ’
® Add critical drift —1, to motion of particles.
e (il particles upon hitting the origin.

i

Process dies out almost surely Kesten 1978. °
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What is the probability of survival until a large time t?

What does the BBM with absorption and critical drift “look like” when conditioned to
survive until a large time t?
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drift —1.5

1o s w0 00 25 o 75 w0 15 150 175 00 00 25 o 75 w0 15 130 175 00

‘ drift —1

o0 25 so 75 10 s 150 s 00 o0 25 so 75 10 s 150 s 00 o0 25 so 75 10 s 130 15 00

drift —0.5

o0 25 so 75 o s mo ws 20 o0 25 5o 75 w0 s mo ws 200 oo 25 so 75 w0 s mo ws 200
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Context: Critical branching Markov processes

Critical Bienaymé-Galton-Watson process (Z,),>0, offspring distribution of variance

o2,

e P(survival until generation n) ~ 2/(a%n), n — oo

® (Z|sn|/N)sefo,1) cONd. on Z, > 0 converges in law to a cond. Feller diffusion.
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Context: Critical branching Markov processes

Critical Bienaymé-Galton-Watson process (Z,),>0, offspring distribution of variance

o2,

e P(survival until generation n) ~ 2/(o2n), n — oo Kolmogorov 1938

® (Z|sn|/N)sefo,1) cONd. on Z, > 0 converges in law to a cond. Feller diffusion.

Question

Does this hold for general multi-type branching processes which are in a suitable
sense critical?
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Context: Critical branching Markov processes

Critical Bienaymé-Galton-Watson process (Z,),>0, offspring distribution of variance

o2,

e P(survival until generation n) ~ 2/(o2n), n — oo Kolmogorov 1938
® (Z|sn|/N)sefo,1) cONd. on Z, > 0 converges in law to a cond. Feller diffusion.

Question

Does this hold for general multi-type branching processes which are in a suitable
sense critical?

Yes for finite number of types. In general (infinite number of types), need a certain
integrability condition. Aidéekon, de Raphélis, Harris, Horton, Kyprianou, Palau, Powell,
Tourniaire, Wang, . . .
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Results
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Survival probability

Ly = ct'/3, ¢ = (3n2/2)1/3, wi(x) = Lg sin(mx/Le)e* .

Theorem ( )

If x = x(t) such that L+ — x — oo, for some constant a > 0,

Py (survival until time t) ~ awy(x).

® Throughout the talk: asymptotics as t — .

® Previous results by Berestycki-Berestycki-Schweinsberg 2012, Kesten 1978,
Derrida-Simon 2007

e t1/3 scaling reminiscent of results about particles in BBM staying always close to
the maximum Faraud-Hu-Shi 2012, Fang-Zeitouni 2012, Roberts 2015.
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Survival probability (contd.)

Ly = ct/3,c = (372 /2)Y/3, wy(x) = Ly sin(mx/Ls)e* e,

Theorem ( )

If x = x(t) such that L+ — x — oo, for some constant a: > 0,

P (survival until time t) ~ aw;(x).

¢ = time of extinction.

Corollary ( )

Suppose x = x(t) such that Ly — x — oco. Let V ~ Exp(1). Then,

¢C—t
+2/3

= 3V, underPy(-|( > t).
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Yaglom limit

Ly = ct'/3, c = (37%/2)/3, ¢ = time of extinction, 7(f) — max, X, (7).

Theorem ( )

Suppose x = x(t) such that Ly — x — oco. Let V ~ Exp(1). Then,

A(t)

78— (3c*V)Y/3, underPy(-|¢ > t).

Reason: morally, 7(f) ~ L, +if { > t (and R(t) = 0if { < t).

Same result holds with R; replaced by log #N%.
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New result: All-time maximum

Define
M = maxA(s), m =argmaxR(s).
s>0 >0
Theorem ( )

Suppose x = x(t) such that L+ — x > t'/5. Then as t — oo, conditional on ¢ > t we
have the convergence in law

Le =91 m —
( tt1/6 ’t%) = <Cl/2/?, 3c 1/2UR), (1)

where R and U are independent random variables, R is Rayleigh distributed with
density 2re™"" on R, and U has a uniform distribution on [0, 1].
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Simulations: conditioned on survival

x = 1, conditioned on survival until time t

t =40

t =100
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Proofs
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Workhorse: the process Z;(s)

® [+(s) =L s =c(t—s)/3
® Zi(s) = Yyen, We-s(Xu($)) = Lyen; Le(s) sin(mXu(s) /Le(s))e (94,

Theorem ( )

Suppose we start with an initial configuration of particles so that Z:(0) — zy > 0 and
L+ — R(0) — oo. Then there exists a non-degenerate stochastic process (E(s))s>o,
such that the following convergence in law holds (w.r.t finite-dimensional
distributions):

(Zt(t(1 = e7%)))s20 = (E(S))s>0-

In fact, (2(s))s>0 is the continuous-state branching process (CSBP) with branching
mechanism v(u) = au + 2ulogu, for some a € R, started from z.
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Workhorse: the process Z;(s)

=Ly s=c(t—s)/3

)
)= ZUGNS We—s(Xu(S)) = Yyen; Le(s) sin(mXu(s) /Le(s))e (&) 1),

® (2(s))s>0: CSBP with branching mechanism ¢(u) = au + Zulogu, for some a € R.

Lt(S
(

ZtS

Theorem ( )

Zt(0) — 20 > 0, Lt — R(0) — oo. Then, (Z:(t(1 — e7%)))s>0 = (E(s))s>0-

Theorem ( )

Under the same assumptions,

P(¢ > t) = P(E(s) = 00, ass — oo | E(0) = z9) = 1 — exp(—azp).
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Workhorse: the process Z;(s)

s) =Li_s = c(t —s)/3.
$) = Duen, Wi—s(Xu(8)) = Cyen; Le(s) sin(mXu(s)/Le(s))e (9 H(),

® (Z(s))s>0: CSBP with branching mechanism ¢ (u) = au + gulog u, forsome a € R.

Theorem ( )

Suppose x = x(t) such that L+ — x — oo. Then there exists a non-degenerate
stochastic process (®(s))s>0, such that the following convergence in law holds
(w.r.t finite-dimensional distributions):

(Zt(t(1 — e %)))s>0 = (®(S))s>0, underPy(-|( >t).

(®(s))s>0 is the process (E(s))s>0, started from 0 and conditioned to go to oo,
i.e. the descendance of a “prolific individual” Bertoin-Fontbona-Martinez 2008
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An auxiliary process with spine

Branching Brownian motion with a distinguished particle (the spine):

e Starts at time zero from a single particle, the spine, at a point x € [0, L¢].

® Fors € [0, t], define
S
1
T(s) = — du.
=),

The spine’s trajectory is equal in law to the process (L+(s)K(7(s)))se[o,1), Where
(K(u))u>0 is the Brownian taboo process on [0, 1] (next slide) started at x/L+(0).

® The spine branches at (accelerated) rate 1.

® One of these offspring is chosen randomly to continue as the spine. The others
spawn independent copies of the original process started at their positions.
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Brownian taboo process

“Brownian motion conditioned to stay in the interval [0, 1]

Doob h-transform of Brownian motion killed when it exists the interval [0, 1] w.r.t. the
—(m?/2)-harmonic function h(x) = sin(mx)

Infinitesimal generator: 192 + m cot(mx)dx

Boundary {0, 1} is entrance-not-exit
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Small time: conditioning = spine

Lemma

Suppose x = x(t) such that Ly — x — oco. Let ug be the law of the original process
conditioned on {¢ > t}, and let vs be the law of the process with spine, both starting
with one particle at x. Then for every ¢ > 0, there exists 6 > 0 such that for
sufficiently large t, we have

drv(pst, vst) < €,

where dyy is the total variation distance between measures.

Proof uses a measure change w.r.t. Z;(dt). Recall: P(¢ > t| Fst) =~ aZ+(0t), when
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Proof of theorem

® M = maxs>o A(s), m = argmaxg A(S)
o x = x(t) such that Ly — x > t1/6 < [}/?

® To show: (LZI_/%”,L}ﬂ?) = (R, 3UR), conditioned on ¢ > t. R Rayleigh, U uniform.
t

Proof steps

1. Conditioning — auxiliary process with spine

2. Maximum, argmax =~ maximum, argmax of spine
3. Use excursion theory for Brownian taboo process
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Step 3

Recall: spine is L¢(s)(1 — K(7(s))). 7(s) = [; M+F du
M = maxs>oLt(s)(1 —K(7(s))), m = arg maxgs( Le(s)(1 —K(7(s)))

Lt—gﬁ 1/21‘(1 72 1 .
LT — | = — —mmK + s}, 3y/yargmin{K(s) + s} | ,v = =
(Li/z t.[.) T\ {()’V}ﬁsgzo{()v} g

2L
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Step 3

Recall: spine is L¢(s)(1 — K(7(s))). 7(s) = [; M+F du
M = maxs>oLt(s)(1 —K(7(s))), m = arg maxgs( Le(s)(1 —K(7(s)))

Linearization

Lt—gﬁ 1/21‘(1 71'2 1 . . T
L/ "— | =~/ — | — K K -
( 7T 5 ﬁglzlg{ (S)+vs},3ﬁar§§3m{ () +sh .= 5

Decompose into excursions below 1/2

<\}7Y Ianig{K(s) + s}, \Fyarsggin{K(s) + 73}) ~ <

1
—— min (Hs +7s), argmin(Hs + vs) | ,
ﬁ(s,Hs)en( >+ 1) ﬁ(s,/%s)en( =7 )>

where Il is a Poisson point process on Ry X [0, 1/2] with intensity measure du ® v, with
v(0, h) = 7 tan(wh) Lambert 2000.
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A Poisson process calculation

Change variables u = \/vs, H, = Hs/ /7.

1
—— min (Hs 4+7s),/vargmin(Hs +vs) | = min (Hy + u), argmin (H, +u
(ﬁ(s,Hs)GH( ° ) f(S,Hs)EH( ° ) (uHu)e (Ha ) (uHu)E (Ha )

where IL, is a Poisson point process with intensity measure du/,/y ® (1/,/7)«V.

1L, =2 PPP(du @ w2dh)

2
min _Hy,argminH, | ~ 1/ — (R, UR)
(u,Hy) €11 (u,Hy) €Il 0
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Thank you for your attention!
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